Nonlinear Schrödinger Equation on Four - Dimensional Compact Manifolds
نویسنده
چکیده
— We prove two new results about the Cauchy problem in the energy space for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global well-posedness for Hartree-type nonlinearities and includes approximations of cubic NLS on the sphere as a particular case. The second one provides, in the case of zonal data on the sphere, local well-posedness for quadratic nonlinearities as well as a necessary and sufficient condition of global well-posedness for small energy data in the Hamiltonian case. Both results are based on new multilinear Strichartz-type estimates for the Schrödinger group. Résumé (Équation de Schrödinger non linéaire sur les variétés quadridimensionnelles compactes) Nous démontrons deux résultats concernant le problème de Cauchy dans l’espace d’énergie pour des équations de Schrödinger non linéaires sur des variétés compactes de dimension 4. Le premier établit le caractère globalement bien posé pour des seconds membres du type de Hartree et contient comme cas particulier certaines régularisations de l’équation cubique sur la sphère. Le second résultat fournit, dans le cas de données zonales sur la sphère, le caractère localement bien posé pour des seconds membres quadratiques, ainsi qu’une condition nécessaire et suffisante à l’existence globale lorsque les données sont assez petites et que l’équation est hamiltonienne. Chacun de ces résultats est fondé sur de nouvelles estimations multilinéaires du type de Strichartz pour le groupe de Schrödinger. Texte reçu le 12 mai 2008, révisé le 26 janvier 2009, accepté le 5 février 2009 Patrick Gérard, Université Paris Sud, Mathématiques, Bât. 425, 91405 Orsay Cedex, France • E-mail : [email protected] Vittoria Pierfelice, Université d’Orléans & CNRS, Bât. de Mathématiques, B.P. 6759, 45067 Orléans Cedex 2, France • E-mail : [email protected] 2000 Mathematics Subject Classification. — 35Q55, 35BXX, 37K05, 37L50, 81Q20.
منابع مشابه
A ug 2 00 5 NONLINEAR SCHRÖDINGER EQUATION ON FOUR - DIMENSIONAL COMPACT MANIFOLDS
We prove two new results about the Cauchy problem for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global wellposedness for Hartree-type nonlinear-ities and includes approximations of cubic NLS on the sphere. The second one provides local wellposedness for quadratic nonlinearities in the case of zonal data on the sphere. Both results are based on...
متن کاملSe p 20 05 NONLINEAR SCHRÖDINGER EQUATION ON FOUR - DIMENSIONAL COMPACT MANIFOLDS
We prove two new results about the Cauchy problem in the energy space for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global wellposedness for Hartree-type nonlinearities and includes approximations of cubic NLS on the sphere. The second one provides, in the case of zonal data on the sphere, local wellposedness for quadratic nonlinearities as we...
متن کاملThe Cauchy Problem for the Nonlinear Schrödinger Equation on a Compact Manifold
We discuss the wellposedness theory of the Cauchy problem for the nonlinear Schrödinger equation on compact Riemannian manifolds. New dispersive estimates on the linear Schrödinger group are used to get global existence in the energy space on arbitrary surfaces and three-dimensional manifolds, generalizing earlier results by Bourgain on tori. On the other hand, on specific manifolds such as sph...
متن کاملBilinear Strichartz Estimates for Schrödinger Operators in 2 Dimensional Compact Manifolds with Boundary and Cubic Nls
In this paper, we establish bilinear and gradient bilinear Strichartz estimates for Schrödinger operators in 2 dimensional compact manifolds with boundary. Using these estimates, we can infer the local well-posedness of cubic nonlinear Schrödinger equation in H for every s > 2 3 on such manifolds.
متن کاملThe Quintic Nonlinear Schrödinger Equation on Three-dimensional Zoll Manifolds
Let (M, g) be a three-dimensional smooth compact Riemannian manifold such that all geodesics are simple and closed with a common minimal period, such as the 3-sphere S with canonical metric. In this work the global well-posedness problem for the quintic nonlinear Schrödinger equation i∂tu+∆u = ±|u|u, u|t=0 = u0 is solved for small initial data u0 in the energy space H(M), which is the scaling-c...
متن کاملThe Schrödinger equation on a compact manifold : Strichartz estimates and applications
We prove Strichartz estimates with fractional loss of derivatives for the Schrödinger equation on any riemannian compact manifold. As a consequence we infer global existence results for the Cauchy problem of nonlinear Schrödinger equations on surfaces in the case of defocusing polynomial nonlinearities, and on three–manifolds in the case of quadratic nonlinearities. We also discuss the optimali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013